Tight Graphs and Their Primitive Idempotents

نویسنده

  • ARLENE A. PASCASIO
چکیده

In this paper, we prove the following two theorems. Theorem 1 Let 0 denote a distance-regular graph with diameter d ≥ 3. Suppose E and F are primitive idempotents of 0, with cosine sequences σ0, σ1, . . . , σd and ρ0, ρ1, . . . , ρd , respectively. Then the following are equivalent. (i) The entry-wise product E ◦ F is a scalar multiple of a primitive idempotent of 0. (ii) There exists a real number 2 such that σiρi − σi−1ρi−1 = 2(σi−1ρi − σiρi−1) (1 ≤ i ≤ d). Let 0 denote a distance-regular graph with diameter d ≥ 3 and eigenvalues θ0 > θ1 > · · · > θd . Then Juris̆ić, Koolen and Terwilliger proved that the valency k and the intersection numbers a1, b1 satisfy ( θ1 + k a1 + 1 )( θd + k a1 + 1 ) ≥ −ka1b1 (a1 + 1)2 . They defined 0 to be tight whenever 0 is not bipartite, and equality holds above. Theorem 2 Let 0 denote a distance-regular graph with diameter d ≥ 3 and eigenvalues θ0 > θ1 > · · · > θd . Let E and F denote nontrivial primitive idempotents of 0. (i) Suppose 0 is tight. Then E, F satisfy (i), (ii) in Theorem 1 if and only if E, F are a permutation of E1, Ed . (ii) Suppose 0 is bipartite. Then E, F satisfy (i), (ii) in Theorem 1 if and only if at least one of E, F is equal to Ed . (iii) Suppose 0 is neither bipartite nor tight. Then E, F never satisfy (i), (ii) in Theorem 1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Strongly Closed Subgraphs with Diameter Two and Q-Polynomial Property∗ (Preliminary Version 2.0.0)

In this paper, we study a distance-regular graph Γ = (X,R) with an intersection number a2 6= 0 having a strongly closed subgraph Y of diameter 2. Let E0, E1, . . . , ED be the primitive idempotents corresponding to the eigenvalues θ0 > θ1 > · · · > θD of Γ. Let V = C be the vector space consisting of column vectors whose rows are labeled by the vertex set X. Let W be the subspace of V consistin...

متن کامل

Finite group algebras of nilpotent groups: A complete set of orthogonal primitive idempotents

We provide an explicit construction for a complete set of orthogonal primitive idempotents of finite group algebras over nilpotent groups. Furthermore, we give a complete set of matrix units in each simple epimorphic image of a finite group algebra of a nilpotent group.

متن کامل

Primitive central idempotents of finite group rings of symmetric groups

Let p be a prime. We denote by Sn the symmetric group of degree n, by An the alternating group of degree n and by Fp the field with p elements. An important concept of modular representation theory of a finite group G is the notion of a block. The blocks are in one-to-one correspondence with block idempotents, which are the primitive central idempotents of the group ring FqG, where q is a prime...

متن کامل

Taut Distance-Regular Graphs of Odd Diameter

Let denote a bipartite distance-regular graph with diameter D ≥ 4, valency k ≥ 3, and distinct eigenvalues θ0 > θ1 > · · · > θD . Let M denote the Bose-Mesner algebra of . For 0 ≤ i ≤ D, let Ei denote the primitive idempotent of M associated with θi . We refer to E0 and ED as the trivial idempotents of M . Let E, F denote primitive idempotents of M . We say the pair E, F is taut whenever (i) E,...

متن کامل

Wedderburn decomposition of finite group algebras

We show a method to effectively compute the Wedderburn decomposition and the primitive central idempotents of a semisimple finite group algebra of an abelian-by-supersolvable group G from certain pairs of subgroups of G. In this paper F = Fq denotes a finite field with q elements and G is a finite group of order n such that FG is semisimple, or equivalently (q, n) = 1. The group algebra FG is a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999